Step 1. Analytic Properties of the Riemann zeta function

Step 1 Part 1; Res > 1 [2 lectures]
Recall that the Riemann zeta function is defined by
1
((s) = (6)

ns’
n=1

which converges (absolutely) for Res > 1. Each individual term n=° =
e~*198™ i5 holomorphic in C. What about when we add infinitely many such
holomorphic functions? To say the series is holomorphic requires more than
it simply converges (even absolutely).

Definition 6.1 Let {Fn(s)}n21 be a sequence of functions defined on S C C.

The sequence {Fy},., converges to Fon S iff

Ve > 0,Vs € §,IN = N(e,s) : Vn > N, |F,(s) — F(s)| < e.
The sequence {Fy},, converges uniformly to Fon S iff

Ve > 0,dN = N(g,8) : Vs € §,Vn > N, |F,,(s) — F(2)] < e.

Make sure you understand the difference between these two definitions. Im-
portantly, the NV found in the second one works for all s € § simultaneously,
i.e. uniformly.

In applications to the Riemann zeta function the F,(s) of this definition
will be the partial sums of the series defining ((s). To check that a series
converges uniformly we can use Weierstrass’s M-test:

Theorem 6.2 Weierstrass M-Test. If Vn > 1 there exists M, > 0 such
that |fn(s)] < M, for all s € S, and Y .~ | M, < oo then Y - gu(s) con-
verges uniformly on S.

Proof See the Background: Complex Analysis I notes. [ |



Example 6.3 ((s) converges uniformly in Res > 1+ 9 for any § > 0.

Proof Let § > 0 be given and set M,, = 1/n'*°. Then for Res > 1+ 6§ we

have
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by a result from Chapter 1. Therefore Y > M, converges and hence ((s)
converges uniformly in Res > 1+ 9. [ |

Example 6.4 The series

n=1

converges uniformly in Res > 149 for any 6 > 0.

Proof left to student. Apply the M-test with M, = (logn) /n'*?. |

What follows from uniform convergence? We have Weierstrass’s Theorem for
Series (see Background: Complex Analysis II notes, or p. 94-95 of Sansone
& Gerretsen, Lectures on the Theory of Functions of a Complex Variable, I,
Noordhoff - Groningen, 1960.) which states

Theorem 6.5 Weierstrass’s Theorem for Series. Assume the func-

tions in the sequence {f;(s)},~, are holomorphic in an open set U C C,
oo - —

and Y2, fi(s) converge uniformly on every closed and bounded subset of U.

Then
(i) F(s) = >_:2, fi(s) is holomorphic on U,

(ii) for all k > 1, the series Yy .o, fi(k)(s) converges on U, and converge
uniformly on every closed and bounded subset of U with limit F*(s). (That
is, the series can be differentiated term-by-term.)

Proof not given. [ |
Applied to ((s) this gives

Theorem 6.6 The Riemann zeta function is holomorphic in Rs > 1, with

derivative
o0

()= -3 2B
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for Res > 1. Further {'(s) is holomorphic in Res > 1.

6



Proof A closed and bounded subset of s : Res > 1 lies within s : Res > 1446
for some § > 0. We have shown that the series defining ((s) converges
uniformly in Res > 1+ 9. Thus the series defining ((s) converges uniformly
on the closed and bounded subset of s : Res > 1. True for all closed and
bounded subsets means we can apply Weierstrass’s result to say that ((s) is
holomorphic in Res > 1. The derivative follows from Part ii of Weierstrass

and
d ( 1 ) d ogn logn
— | =—e¢ = — :

ds \ n®

ds ns

From this we can derive

Example 6.7 The logarithmic derivative

1s holomorphic in Res > 1.

Proof From its interpretation of ((s) as a convergent infinite product we
know that ((s) # 0 in Res > 1. Thus 1/((s) is well-defined for such s. That
('(s) /¢(s) is holomorphic in Re s > 1 follows from Theorem 6.6.

[

Theorem 6.5 and Example 6.4 together give

Example 6.8 The series

510
nS
n=1
s holomorphic in Res > 1.

In Chapter 2 we showed that

/

Y

n

()= -3 A )

for all real o > 1. Is this true for complex s: Res > 17



From Complex Analysis we have

Theorem 6.9 Assume that F(z) and G (z) are analytic in a path connected
open set U. Assume there exists a convergent sequence {zi}i>1 of points of
U with limit point 2z, also in D for which F(z) = G (%) for alli > 1 and
F(z) = G (z¢). Then F(z) =G (2) for all z € U.

This is the last result in the Background notes: Analytic Continuation.

Theorem 6.10 The logarithmic deriwvative satisfies

Sy

for Res > 1.

Proof In Theorem 6.9 let F(s) = ('(s) /¢(s), G(s) = —>_ 2 A(n)n™%,
U={s:Res>1} and {z},., a convergent sequence of real numbers > 1
with limit > 1, (e.g. 2 = 3 — 1/i). The result then follows from Theorem
6.9 and (7). [



